Structure Reports

Online
ISSN 1600-5368

Li-Xue Zhang,* Jian-Yu Jin, San-Nu Zhou, Hong-Ping Xiao and An-Jiang Zhang

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
zhanglixuelz@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.077$
$w R$ factor $=0.169$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
6-(4-Fluorophenyl)-3-methyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FN}_{4} \mathrm{~S}$, the triazole ring is planar, whereas the thiadiazine may be regarded as having a screwboat conformation.

Comment

1,2,4-Triazoles fused with six-membered ring systems are found to possess diverse applications in the fields of medicine, agriculture and industry. The commonly known systems are triazoles fused with pyridine, pyridazine, pyrimidine, pyrazines and triazines. A literature survey reveals that there are not many examples of triazoles fused with thiadiazines. Moreover, a large number of triazolothiazines have been shown to exhibit antimicrobial (Feng et al.,1992) and diuretic (Mohan \& Anjaneyulu, 1987) properties and act as photographic couplers (Holla et al., 2001). In this paper, we report the synthesis and crystal structure of the title compound, (I).

(I)

In (I), the five-membered triazole ring (N2-N4/C9/C10) and the benzene ring (C1-C6) are each essentially planar, while the six-membered thiadiazine ring ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7-\mathrm{C} 9 / \mathrm{S} 1$) is distorted from planarity and may be regarded as having a screw-boat conformation, with atoms C8 and C7 displaced by 0.985 (5) and 0.408 (5) Å, respectively, above the N1/N2/C9/S1 plane (Fig. 1). Atoms N1 and S1 are slightly displaced away from the triazole ring plane by 0.039 (6) and 0.139 (6) \AA, respectively. The benzene ring is nearly parallel to the triazole ring, with a dihedral angle between them of 5.7 (2) ${ }^{\circ}$. Both the $\mathrm{S}-\mathrm{C}($ mean $1.775 \AA$) and $\mathrm{C}-\mathrm{N}$ bond lengths are in good agreement with the values observed in related complexes (Sert et al., 2003; Xiang et al., 2004). The $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ distances in the triazole ring indicate electron delocalization over the ring, as observed in similar compounds (Allen et al., 1987; Jin et al., 2004).

Received 15 December 2005 Accepted 19 December 2005

Experimental

4-Amino-5-mercapto-3-methyl-1,2,4-triazole was prepared by the reaction of acetic acid and thiocarbohydrazide, following the literature method of Francesco et al. (1997). To a solution of 4-amino-5-mercapto-3-methyl-1,2,4-trizole (0.001 mol) in absolute ethanol $(20 \mathrm{ml})$ was added 2-bromo- 4^{\prime}-fluoroacetophenone (0.001 mol). The mixture was refluxed for 7 h . The solid obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give compound (I). The purified product was dissolved in 95% ethanol and kept at room temperature for 5 d , after which colourless single crystals of (I) were formed.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FN}_{4} \mathrm{~S}$

$M_{r}=248.28$
Monoclinic, $P 2_{{ }_{1}} / n$
$a=4.0626$ (5) \AA
$b=25.530(3) \AA$
$c=10.5576$ (12) \AA
$\beta=96.909$ (2) ${ }^{\circ}$
$V=1087.1(2) \AA^{3}$
$Z=4$
$D_{x}=1.517 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1125
\quad reflections
$\theta=2.5-24.2^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=273(2) \mathrm{K}$
Block, colourless
$0.17 \times 0.14 \times 0.13 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.956, T_{\text {max }}=0.958$
5662 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.077$
$w R\left(F^{2}\right)=0.169$
$S=1.25$
1946 reflections
155 parameters
H-atom parameters constrained

1946 independent reflections 1613 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-4 \rightarrow 4$
$k=-25 \rightarrow 30$
$l=-12 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0679 P)^{2}\right. \\
& \quad+0.5536 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.36 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA\left(\mathrm{C}_{\text {aromatic }}\right)$ or $0.96\left(\mathrm{C}_{\text {methylene }}\right.$ and $\left.\mathrm{CH}_{3}\right)$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}, \mathrm{C}_{\text {methylene }}\right)$ or $1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$.

Figure 1
The molecular structure of (I), with the atom numbering, showing displacement ellipsoids at the 30% probability level.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. M203149).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Feng, X. M., Chen, R. \& Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194.
Francesco, P. I., Giancarlo, F., Ilaria, L. \& Daniele, S. (1997). J. Heterocycl. Chem. 34, 1255-1258.
Holla, B. S., Akberali, P. M. \& Shivananda, M. K. (2001). Il Farmaco, 56, 919927.

Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. \& Shen, L. (2004). Acta Cryst. C60, o642-o643.
Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Sert, S., Ereag, A., Senturk, O. S., Sterenberg, B. T., Udachin, K. A., Ozdemir, U. \& Sarikahya, F. U. (2003). Polyhedron, 22, 1689-1693.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. \& Hu, M.-L. (2004). Acta Cryst. E60, o2249-o2251.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

